3.4.47 \(\int \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) (A+B \cos (c+d x)) \, dx\) [347]

Optimal. Leaf size=108 \[ \frac {2 (5 a A+3 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (A b+a B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (A b+a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 b B \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

2/5*(5*A*a+3*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*
(A*b+B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*b*B*cos(
d*x+c)^(3/2)*sin(d*x+c)/d+2/3*(A*b+B*a)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3047, 3102, 2827, 2719, 2715, 2720} \begin {gather*} \frac {2 (a B+A b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (5 a A+3 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 b B \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]),x]

[Out]

(2*(5*a*A + 3*b*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(A*b + a*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*(A*
b + a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*b*B*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) (A+B \cos (c+d x)) \, dx &=\int \sqrt {\cos (c+d x)} \left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \, dx\\ &=\frac {2 b B \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2}{5} \int \sqrt {\cos (c+d x)} \left (\frac {1}{2} (5 a A+3 b B)+\frac {5}{2} (A b+a B) \cos (c+d x)\right ) \, dx\\ &=\frac {2 b B \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+(A b+a B) \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{5} (5 a A+3 b B) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 (5 a A+3 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (A b+a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 b B \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{3} (A b+a B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 (5 a A+3 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (A b+a B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (A b+a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 b B \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.44, size = 86, normalized size = 0.80 \begin {gather*} \frac {2 \left (3 (5 a A+3 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 (A b+a B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sqrt {\cos (c+d x)} (5 A b+5 a B+3 b B \cos (c+d x)) \sin (c+d x)\right )}{15 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]),x]

[Out]

(2*(3*(5*a*A + 3*b*B)*EllipticE[(c + d*x)/2, 2] + 5*(A*b + a*B)*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]
*(5*A*b + 5*a*B + 3*b*B*Cos[c + d*x])*Sin[c + d*x]))/(15*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(370\) vs. \(2(148)=296\).
time = 0.29, size = 371, normalized size = 3.44

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-24 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (20 A b +20 a B +24 B b \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-10 A b -10 a B -6 B b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a +5 a B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b \right )}{15 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(371\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b
+(20*A*b+20*B*a+24*B*b)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*A*b-10*B*a-6*B*b)*sin(1/2*d*x+1/2*c)^2*co
s(1/2*d*x+1/2*c)+5*A*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))*a+5*a*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))-9*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*
b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.14, size = 175, normalized size = 1.62 \begin {gather*} \frac {2 \, {\left (3 \, B b \cos \left (d x + c\right ) + 5 \, B a + 5 \, A b\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (i \, B a + i \, A b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-i \, B a - i \, A b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-5 i \, A a - 3 i \, B b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (5 i \, A a + 3 i \, B b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{15 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/15*(2*(3*B*b*cos(d*x + c) + 5*B*a + 5*A*b)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*sqrt(2)*(I*B*a + I*A*b)*weier
strassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*sqrt(2)*(-I*B*a - I*A*b)*weierstrassPInverse(-4, 0, c
os(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-5*I*A*a - 3*I*B*b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4,
0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(5*I*A*a + 3*I*B*b)*weierstrassZeta(-4, 0, weierstrassPInverse(
-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 1.01, size = 128, normalized size = 1.19 \begin {gather*} \frac {2\,A\,b\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,B\,b\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(A + B*cos(c + d*x))*(a + b*cos(c + d*x)),x)

[Out]

(2*A*b*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*B*a*(cos(c + d*x)^(1/2)*sin
(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*A*a*ellipticE(c/2 + (d*x)/2, 2))/d - (2*B*b*cos(c + d*x)^
(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________